In line with the organization of ECML-PKDD 2020, also the organizers of XKDD 2020 are working on COVID-19 contingency plans. The workshop will not be postponed: it will take place as planned. Thus, all accepted contributions will be published, presented, etc, as normal (although presentations might take a different form). We are developing plans in case the conference needs to be organised virtually. For sure it will be possible to participate online and provide video for replacing online talks when they are not possible. Final decisions on the modalities will be taken and communicated as soon as possible, and in any case before the early registration deadline.
In the past decade, machine learning based decision systems have been widely used in a plethora of applications ranging from credit score, insurance risk, and health monitoring, in which accuracy is of the utmost importance. Although the application of these systems may bring myriad benefits, their use might involve some ethical and legal risks, such as codifying biases; jeopardizing transparency and privacy, reducing accountability. Unfortunately, these risks increase and are made more serious by the opacity of these systems, which often are complex and their internal logic is usually inaccessible to humans.
Nowadays most of the Artificial Intelligence (AI) systems are based on machine learning algorithms. The relevance and need of ethics in AI is supported and highlighted by the various initiatives that in the world provide recommendations and guidelines in the direction of making AI-based decision systems explainable and compliant with legal and ethical issues. These include the EU's GDPR regulation which introduces, to some extent, a right for all individuals to obtain ``meaningful explanations of the logic involved'' when automated decision making takes place, the ``ACM Statement on Algorithmic Transparency and Accountability'', the Informatics Europe's ``European Recommendations on Machine-Learned Automated Decision Making'' and ``The ethics guidelines for trustworthy AI'' provided by the EU High-Level Expert Group on AI.
The challenge to design and develop trustworthy AI-based decision systems is still open and requires a joint effort across technical, legal, sociological and ethical domains.
The purpose of XKDD, eXaplaining Knowledge Discovery in Data Mining, is to encourage principled research that will lead to the advancement of explainable, transparent, ethical and fair data mining and machine learning. The workshop will seek top-quality submissions addressing uncovered important issues related to ethical, explainable and transparent data mining and machine learning. Papers should present research results in any of the topics of interest for the workshop as well as application experiences, tools and promising preliminary ideas. XKDD asks for contributions from researchers, academia and industries, working on topics addressing these challenges primarily from a technical point of view, but also from a legal, ethical or sociological perspective. In the past decade, we have witnessed the increasing deployment of powerful automated decision-making systems in settings ranging from control of safety-critical systems to face detection on mobile phone cameras. Albeit remarkably powerful in solving complex tasks, these systems are typically completely obscure, i.e., they do not provide any mechanism to understand and explore their behavior and the reasons underlying the decisions taken.
Topics of interest include, but are not limited to:
Submissions with an interdisciplinary orientation are particularly welcome, e.g. works at the boundary between ML, AI, infovis, man-machine interfaces, psychology, etc. Research driven by application cases where interpretability matters are also of our interest, e.g., medical applications, decision systems in law and administrations, industry 4.0, etc.
The call for paper can be dowloaded here.