Since before the dawn of the computer age, scientists have been captivated by the idea of creating machines that could behave like humans. But only in the last decade has technology enabled some forms of Artificial Intelligence (AI) to become a reality.
Interest in putting AI to work has skyrocketed, with burgeoning array of AI use cases. Many surveys have found upwards of 90 percent of enterprises are either already using AI in their operations today or plan to in the near future.
Eager to capitalize on this trend, software vendors – both established AI companies and AI startups – have rushed to bring AI capabilities to market. Among vendors selling big data analytics and data science tools, two types of Artificial Intelligence have become particularly popular: Machine learning and deep learning.
While many solutions carry the "AI," "Machine learning," and/or "deep learning" labels, confusion about what these terms really mean persists in the market place. The diagram below provides a visual representation of the relationships among these different technologies:
As the graphic makes clear, machine learning is a subset of artificial intelligence. In other words, all machine learning is AI, but not all AI is machine learning.
Similarly, deep learning is a subset of machine learning. And again, all deep learning is machine learning, but not all machine learning is deep learning.
AI, machine learning and deep learning are each interrelated, with deep learning nested within ML, which in turn is part of the larger discipline of AI.
Computers excel at mathematics and logical reasoning, but they struggle to master other tasks that humans can perform quite naturally.
For example, human babies learn to recognize and name objects when they are only a few months old, but until recently, machines have found it very difficult to identify items in pictures. While any toddler can easily tell a cat from a dog from a goat, computers find that task much more difficult. In fact, captcha services sometimes use exactly that type of question to make sure that a particular user is a human and not a bot.
In the 1950s, scientists began discussing ways to give machines the ability to "think" like humans. The phrase "artificial intelligence" entered the lexicon in 1956, when John McCarthy organized a conference on the topic. Those who attended called for more study of "the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it."
Some of these early researchers believed it would be only a few years before they solved these problems. In reality, however, it took several decades for computer hardware and software to advance to the point where AI applications like image recognition, natural language processing and machine learning became possible.
Critics rightly point out that there is a big difference between an AI system that can tell the difference between cats and dogs and a computer that is truly intelligent in the same way as a human being. Most researchers believe that we are years or even decades away from creating an artificial general intelligence (also called strong AI) that seems to be conscious in the same way that humans beings are — if it will ever be possible to create such a system at all.
If artificial general intelligence does one day become a reality, it seems certain that machine learning will play a major role in the system's capabilities.
Machine learning is the particular branch of AI concerned with teaching computers to "improve themselves," as the attendees at that first artificial intelligence conference put it. Another 1950s computer scientist named Arthur Samuel defined machine learning as "the ability to learn without being explicitly programmed."
In traditional computer programming, a developer tells a computer exactly what to do.